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MINIMUM VELOCITY INCREMENT SINGLE-IMPULSE PROPULSIVE-GRAVITY
TURN WITH CONSTRAINTS ON THE PERIAPSIS RADIUS

By Benjamine J. Garland
SUMMARY

A technique has been developed for determining the single-impulse,
propulsive-gravity turn which requires the minimum velocity increment.
This technique allows minimum and maximum periapsis radius to be specified.
This technique is compared to a dual-impulse, propulsive-gravity turn
which requires the velocity to be changed as the spacecraft enters and
leaves the sphere of influence of the planet.

INTRODUCTION

The trajectory of a spacecraft will be modified significantly by the
close approach to any planet. During a close approach to a planet, the
gravitational attraction of the planet masy be used to reduce the propul-
sion required to change the trajectory of the spacecraft. Normally, the
trajectory of a manned spacecraft will be changed so that it will continue
to another planet, which is not necessarily Earth. The trajectory of an
unmanned spacecraft may be changed to achieve other conditions such as a
close approach to the Sun.

It is entirely possible that the gravitational attraction of the
planet may be sufficient to achieve the desired change. Examples of
trajectories which can be achieved by the effect of the planet's attrac-
tion alone are presented in reference 1. These trajectories must be con-
sidered as special cases of non-stop roundtrip interplanetary trajectories.

The gravitational attraction of the planet can be supplemented by
propulsion for more general casses. This type of maneuver is called a
propulsive-gravity turn. The selection of the number and location of
velocity impulses which result in the lowest propulsion requirement is a
difficult problem. The optimum location for a single-impulse turn has
been described in reference 2 and approximated in reference 3. A maneuver
involving velocity changes as the spacecraft enters and leaves the sphere
of influence of the planet was described in reference 4. A method of
calculating the optimum number and location of impulses for this type of
maneuver has been presented in reference 5.



Unfortunately, neither the method of reference 2 nor the method of
reference 5 considered constraints on the periapsis radius. In fact, it
was noted in reference 2 that transfers which resulted in the minimum
velocity change usually take place below the surface of the planet. This
paper presents a method to determine the location of a single-impulse
turn which causes the impulsive-velocity change to be a minimum and keeps
the periapsis radius within specified wvalues.

IS

)

SYMBOLS

turning angle; angle through which the spacecraft's path
must be deflected while in the sphere of influence.

variables defined in equations (22a), (22b), and (22c)
eccentricity

function defined in equation (A5)

auxiliary angle of hyperbola

velocity vector with respect to circular orbital velocity
at surface of planet

magnitude of U

impulsive velocity increment

function defined by equation (20)

semimajor axis with respect to radiu; of planet
direction of velocity increment

angle between velocity vector and local horizontal
true anomaly

radius with respect to the radius of the planet

half-angle of hyperbola

" time from periapsis passage with respect to the period

of a circular orbit at surface of planet
function defined in equations (17a) and (17b)

path angle defined in figure B-1



Subscripts
c common ‘
I inbound
max maximum
min minimum
0 outbound
P periapsis
s sphere of influence
T transfer
u unknown
ANALYSIS

The motion of the spacecraft within the sphere of influence of the
target planet is described by two intersecting coplanar hyperbolas as
shown in figure 1. The trajectory of the spacecraft is changed from one
hyperbola to the other by an impulsive-velocity change at the intersection
of the hyperbolas. The purpose of the analysis is to determine the trajec-
tory which requires the lowest impulsive-velocity increment. The trajec-
tory is constrained by a number of considerations which are (1) the
velocity vectors as the spacecraft enters and leaves the sphere of in-

fluence of the target planet (I_I_I and go) must be matched, (2) the point

of closest approach to the target planet must lie between some minimum

3 . d I}
and maximum value (Ip,mln an lp,max)’ and (3) the time between the

periapsis passage and the transfer must be greater than some specified
minimum time (Tmin)'

Basic Equations
The basic equations used in this development are standard except that

they have been non-dimensionalized. The dimensional equations can be found
in sources such as reference 6.



The turning angle A 1is determined by the velocity vectors T.__I_I

and LIO This angle is given by the equation
u_. U

A= cos-l(—tlj—ﬁ_—c—)) (1)
I 0

The semimajor axis of the hyperbola (a) can be obtained from the
non-dimensional vis-viva equation which is

2 1
U2=(T-a'>- (2)

If the conditions at the sphere of influence are used, then

-1
“(2_ _U2> _
1 S
S

The eccentricity of the hyperbola (e) is

—~
w
~

or

v = cos ! . (6)
1 (2 2)
~1 — -U
P\, S

The time required to travel from the periapsis is

=1 - LA §
T =5 Ea tan H - 1n tan():+ 2)],

—~

7)




where H is the auxiliary angle of the hyperbola defined by

2 tan-1< : : :JL_ tan %) (8)

—cos_lzé[&—;—?—z—)- - ]; (9)

The path angle at any point on the hyperbola is

=]
n

and the true anomaly is

=3
I

‘= tan-1(_9__~&rL), (10)

1l + e cos 1

Conditions for Gravity Turn

The turn can be accomplished by the gravitational attraction of the

planet alone if UI = UO and 1p,min ﬁ_lp ﬁ-lp,max'
The half-angle of the hyperbola, which is tangent to both gi and
HO’ is
_ 17 =-A
v = > . (11)

The value of Ip can be found by substituting equation (11) into

equation (6) and rearranging the resulting equation to obtain

Velocity Increment Required for Transfer at Common Periapsis

For any values of UI’ UO’ and A, there is one combination of inbound

and outbound hyperbolas which have the same periapsis. The existence of
a unique common periapsis is proven in appendix A. The impulsive-velocity
inecrement required for the transfer at the common periapsis point is
usually less than 3 percent greater than the minimum (ref. 2 and 3).




The transfer can take place at the common periapsis only if

1 . <1 <1 and T, = 0,
p,min — p,c — ‘p,max min

The method for determining the common periapsis is discussed in
appendix A. If the transfer can be made at the common periapsis, the
velocity increment required for the propulsive-gravity turn is

8Uy, = 12 —%— - 2 -i— . (13)
p,C I 'pse 0

Location of Transfer for Minimum Impulsive~Velocity Increment

If the transfer cannot be made at the common periapsis, it is neces-
sary to find a location which will minimize the velocity change required.
The location of the transfer will be specified by the periapsis radius
of one hyperbols and the true anomaly measured along this hyperbola. The
general model used to describe the single-impulse, propulsive-gravity
turn is shown in figure 1. Figure 2 defines some of the angles which are
used to describe the maneuver.

It can be seen that if

A+7={(n- vI) +n; - N, + (m - vo)

or

(1)

A=TT—VI—vo+nI—nO,

only two of the variables on the right side of equation (1k4) are known
at any time. The known quantities depend on the sign of the true anomaly

of the transfer (nT) in the following manner.
If R cas
ng Known quantities { Unknown quantities
>0 nI = nT no
V1 Vg
<0 Ny = N Nt
Yo Y1




Equation (14) can be written into two forms depending upon the sign
of Np For Np > 0, the form is

\)O+r]0=-n»_A'+n_\)

T I’ (15a)

and for N < 0, it is

(15b)

If the cosine of each side of these equations is taken and standard
trigometric relations are used, the resulting equations are

\
sin VO sin no = cos (ﬂ - A+ nT - VI ) - cOos VO cos no (16a)

- sin vy sin n, = cos <ﬂ - A-ng, - vé) - €os v; cos np - (16b)

For convenience if Np > 0, let

>
i

cos (TT - A+ nT - VI) s (17a)

and for N <0, let

cOSs (TT - A - nT - \)0) > (lTb)

and n and v be the dependent variables. Equations (16a) and (16b) are

>
[{]

identical if ¥, Ny and v, are used and the equations are squared. The

single resulting equation is




Equations (4), (5), and (9) are combined to yield

cos n
T u_X_ _ 3
cos v 1 (19a)
u T
and
“jﬁr- 1=-%
CcOS \)u (].u (19b)
where

x = 224 Dol . (20)
o
u
Equation (18) becomes
1 2 I-x__2 )2 = 0
—r X +(1+X) - —Ix +<X+l = (21)
1 a IT
T u
with the aid of equations (19a) and (19b). If the variables s Cps and
03 are defined as
2
. - (1 +x) 1
1 2 (22a)
_ 2 (1-x)
=1 " a (22b)
T u
and
L
c, =_Jc2 -
3°N% T (22¢)
then the solution for x is
x =0 (Cy xcy) - (23)




The value of 1 u is found to be

pou - %y [li 1';f] (2L)

by solving equation (20) for 1 . Since 1 must be positive and o
pP,u ,u u

always negative for a hyperbola, the only form of this equation which
must be considered is

X
lp,u=°‘u[1’ l'T] ’ (25)

which, when equation (23) is substituted, becomes

Cl )
Ip,u = o, 1-11- P (C2 + C3) . (26)

u

There are two values of 1 u obtained from this equation. The veloc-
2

ity increment required for the transfer is

I 2 _ _ 2
8Uq [UT,I+UT,O 2Up 1 Up,o 05 (vp g YT,O)] - (27)

The velocity at any point along a hyperbola. depends only on the semi-
major axis of the hyperbola and the radius of the transfer location.

Therefore, the periapsis radii which result in the smallest change
in the path angle at the transfer point will result in the smallest wvalue
of GUT' The value of 1_ which is the closest to Ip will require the

: b

2
smallest change in the path angle.

It is possible that the spacecraft may pass through the periapsis of
both the inbound and outbound hyperbolas. The spacecraft will pass through
both periapsides if

<0
N and YT,I >0

or

N, > O and Yy < 0.
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One of the constraints of the problem is violated if either of these

conditions are true and if 1 < . » In this case, the value of
PLu p,min

1_ used to calculate 1 must be increased until 1 is equal to
1Y »u Pu

lp min’ An estimate of the new value of lp is found by assuming that
b
e and n remain constant. Therefore,
u T,u

e (1+e) )

T  ‘p,u . (28)

: +
1 eu cos nT,u

The half-angle of the hyperbola is

1 (2 - 1) -1
=B _
cos Vv atT 1 cos nT,u

or (29)

The new value of W is found by combining equations (28) and (29).
The resulting equation is

-

1 ..
1p = -2— (20, + 1T cos T]T) + JT}OLZ - hotlI‘ + 1T2 COSznT . (30)

The sign of the second term in this equation is selected so that the
smallest change in lp will result. The process is repeated with the new

al until = L.
value of Ip i lp,u p,min

The direction of the wvelocity increment is

U sin - U sin
b = tan’l[ T,0 Yr.0 7 “0,I YI;]:]

- (31)
Up,0 €08 Yp o = Up 1 810 ¥qp 1

The location of the transfer which results in the minimum wvalue of
BUT is found by varying N until a minimum is found. The permissible

value of N lies between the location determined by Tmin and the point

at which the hyperbola crosses the sphere of influence.
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RESULTS AND DISCUSSION

The velocity increment required to turn the spacecraft through 20°
is presented in figure 3 as a function of UO' The UI is 1.8, and IP is
between 1.1 and 2.0. The velocity increment required by the single-impulse
propulsive-gravity turn is less than that required by the dual-impulse
propulsive-gravity turn of reference 4. For the dual-impulse maneuver,

GUT = |UI - UO|, as explained in appendix B.

Figure Y4 presents the periapsis altitude for the same conditions as
figure 3. The periapsis altitude of the single-impulse maneuver is 0.936

when UO is 1.4 and decreases to the minimum value of 0.1 when UO = 2.48.

The periapsis altitude is 0.4T4 when UO =U The periapsis altitude of

I
the dual-impulse maneuver is 0.47L if U < U_. The periapsis altitude

0-— I

decreases as UO is increased above UI until the minimum altitude is

reached when UO = 2.08. The periapsis altitude of the dual-impulse

maneuver is always less than or equal to the periapsis altitude of the
single-impulse maneuver.

The effect of specifying that 1P = 1.1 is shown in figure 5 together

with the results for the single-impulse maneuver from figure 3. The
effect of restricting Ip is to increase GUT. The minimum value of

GUT = 0.12 and occurs when UO = 1.86. (If the planet is Mars, this is

1396 fps.) The largest increase in 8§Up is 0.125 and occurs when U, = 1.8.

Figure 6 illustrates what happens if the turning angle is increased
to 60°. The single-impulse propulsive-gravity turn is more efficient
than the dual-impulse propulsive-gravity turn if UO < 1.33. There is a

discontinuity in the slope of the éUT-versus-UO curve for the single-

impulse maneuver when UO = 1.8. This is also the point at which the

GUT for the single-impulse maneuver exceeds 6UT for the dual-impulse

maneuver by the largest amount. The GUT for the two maneuvers approach
the same value as UO is increased further. The periapsis radius is 1.1
over the entire range of UO although the maximum permissible radius is 2.0.

The location of the single-impulse maneuver for the cases presented
in figure 6 is presented in figure T as a function of UO. The location

of the maneuver is specified by the true anomaly and is limited by the
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sphere of influence of the planet. The true anomaly of the maneuver is

2.4° when UO = 0.6 and decreases as UO is increased. The true anomaly

continues to decrease until UO = 1,33. At this value of U the maneuver

O,
occurs as the spacecraft enters the sphere of influence. The trajectory
of the spacecraft within the sphere of influence continues to change as

UO is increased although the impulse is still applied as the spacecraft

enters the sphere of influence. The impulse can be applied as the space-

craft either enters or leaves the sphere of influence if UO = 1.8, If

UO > 1.8, the trajectory of the spacecraft within the sphere of influence

remains the same, and the velocity is changed as the spacecraft leaves
the sphere of influence.

The single-impulse, propulsive-gravity turn becomes a special case
of the dual-impulse, propulsive-gravity turn whenever the impulse occurs
at the sphere of influence. In this case, it is apparent that the dual-
impulse, propulsive-gravity turn should require a smaller total velocity
change than the single-impulse, propulsive-gravity turn. The discontinuity
in the slope of the GUT-versus-UO curve occurs because the location of

the impulse changes from the point of entry into the sphere of influence
to the point of exit from the sphere of influence as U, is increased

0
above 1.8.
CONCLUDING REMARKS

A technique for determining the single-impulse, propulsive-gravity
turn which requires the minimum velocity change has been developed. The
periapsis radius is constrained to be within some specified range. In
general, the single-impulse, propulsive-gravity turn requires a smaller
velocity change than the dual-impulse, propulsive-gravity turn presented
in reference 4. Under certain conditions the single-impulse maneuver
degenerates into a special case of the dual-impulse maneuver. Whenever
this occurs, the velocity change required by the dual-impulse maneuver
is less than that required by the single-impulse maneuver.

Both the single-impulse, propulsive-gravity turn and the dual-impulse,
propulsive-gravity turn should be checked if the minimum velocity change
is desired. However, it should be realized that neither of these turns
necessarily result in the lowest possible velocity change.
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PLANET

TRAJECTORY OF SPACECRAFT

/

Figure 1.- Model used to describe single-impulse propulsive-gravity tumn.
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OUTBOUND
HYPERBOLA

INBOUND
HYPERBOLA

Figure 2.~ Definition of angles used to describe single-impulse powered turn.
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APPENDIX A

DETERMINATION OF COMMON PERIAPSIS
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APPENDIX A
DETERMINATION OF COMMON PERIAPSIS

The turning angle, A, is defined by the nondimensional velocity

vectors HI and gb. If the transfer between the inbound hyperbola and

the outbound hyperbola takes place at the periapsis of each hyperbola,
then

"r,r = "o = O

and equation (14) becomes

or (A1)

The half-angles of the inbound and outbound hyperbolas Y1 and Yoo

are given by equation (6). These angles are found by cambining equa-
tions (4). They are

a
. cos-l(__l_
I aI - Ip,c (A2)
and
o
\)O = cos"l a—:g———
0~ 'pe / (A3)

The half-angle of the hyperbola is defined so that negative values
have no significance. Since the semimajor axis of a hyperbola is always
negative and the periapsis radius is positive, the maximum value of the

half-angle is ©/2. Both Vo and v, are single-valued functions of 1

and are restricted to be between O and n/2. Therefore,

Db,cC

Qi(\)I-P vo)f_-;r .



2l

Since

by definition, there is only one value of 1 o which will satisfy
9

equation (Al).

If equations (Al), (A2), and (A3) are combined, the resulting equation
is

A =7 - cos-l

which can be solved by the Newton-Raphson technique with no danger of
determining an incorrect root. The function f is defined as

f=A-1n+ cos_l L + cos.l _— (A5)

and its derivative with respect to Ip o is
3

ar  _ °1 7
d T - 1 1 - 2a
'p,e Car = tp,e) [osetpue 1)]?
(46)
%0
% ~ 'p,e [1p,c(lp,c - 20‘0)]%
A new value of lp is given by the equation
_ iy
(lp)new - (lp)old - _4f (AT)

The iteration process is repeated until the value of 1 o is changed
3
by less than some arbitrary amount.
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APPENDIX B

DUAL-IMPULSE PROPULSIVE-GRAVITY TURN
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APPENDIX B

DUAL-IMPULSE PROPULSIVE-GRAVITY TURN

A type of propulsive-gravity turn with velocity changes as the space-
craft enters and leaves the sphere of influence of the planet was described
in reference L. This maneuver is described by the model shown in
figure Bl. The velocity changes are given as

— 2 2 i’
sUL = [UI + U2 - 20U cos(ws - wI)] (B1)
and
§U, = [ég + U2 - 20U cos(y +y - T+ AJ]%' ' (B2)

The total velocity change (GUT) is

§Uqp = U, + 8U, (B3)

The 86Uy is a function of the eccentricity (e), the periapsis radius

(Ip) and the angle ¢I. The condition for a minimum value of &U is

a(eu,,) 3(8u,) a(su,,)
_ T T

In general, this equation is valid only if the partial derivetives

a(aUT) a(auT) B(GUT)
? and ——— are all zero. The partial derivatives are

3e 3 Y

P I
3(su.,) -

T 1 1
e 21 U {GU [U - Up cos (v, = ¥p)
ps I .
= U -U.cos (¢ + ¢, -m+ A)- (5)

GUO s 0 s I ]

1 Uvu UsUO
+ sin (¢ - y.) + sin(y_ + Y. - 7 + A)
evez - 1 s~ I 78U, s I




3(8u.,)
T8 e~1\1 _
a1 T 2u 1% jsuU [Us UI cos(w wl)]
P s I
1 (B6)
+ Eﬁg [ﬁ UO cos(tpS ty, - A)] 2 s
and
a(su,) U U
I I
- = - sin(y_ - ¥.)
awI GUI s I
(BT)
U UO
+ 6; sin(wS Y -omH A) .

0]

In reference 4, the value of wI was found as a function of 1_ and e

by assuming that |¢s - wII and l“’s g -+ A| are very small. The
The correct values of e and 1p were found by iterative methods.
The conditions for which the three partiasl derivatives given by

equations (B5), (B6), and (B7) are equal to zero will now be found ana-
lytically. First, if equation (B6) is zero, then equation (B5) becomes

UsUI
- sin(y_ - ¢.) +
efe? -1 GUI s T
u_u, (B8)
i s:.n(wS + wI -7+ A)]=0.

0]

A comparison of equations (B8) and (B6) shows that both can be equal
to zero only if

p =T A (B9)
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and

_m~-A (B10)

If equations (Bl), (B2), (B9), and (Bl0O) are substituted into
equation (B6) the resulting equation is

U

s~ 1 Us B Uo
lu. -uU
s

= - B1l)
[0, - 0. (

1l

This equation is wvalid only if

sgn (U -U_) = sgn (U_ - Uo) 5

s - Y1 s (B12)

that is, if the magnitude of Us lies between UI and UO. The eccentricity
of the trajectory is

e = 1
) cos( =2
2
or
e = L s .
sini%i (B13)
and the periapsis radius is
: e -1
1 =
P y2.--2 (B1k)
] g
In summary, GUI is a minimm if
T - A
w =
and I 2
1
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and Us is between UI and UO' The minimum value of 6UT is
(SUT = |UI - UOI,
and 1 lies between 1 and 1 .
P p,I p,0
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Figure B1.~ Model used to describe dual-Iimpulse powered turn.
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